Abstract

AbstractUniaxial tension experiments on precracked rocklike samples and the related numerical simulations using FRANC3D were performed to investigate the growth mechanism of three-dimensional (3D) cracks in rocks under tension as well as the strength and failure behavior of samples. Experimental results indicate that the geometric characteristics of preexisting cracks, including crack dip angle, crack spacing, and crack intensity, have significant effects on the strength and failure modes of the samples. Failure of samples resulted from the propagation of a single crack and the coalescence of multiple cracks if the spacing between adjacent cracks is less than the length of the cracks. Distribution of mixed-mode stress-intensity factors (SIFs) and energy-release rates (ERRs) along the fronts of cracks with different geometric characteristics was investigated numerically, and the results can provide an interpretation for the experimental results. Based on numerical simulations of the propagation processes o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.