Abstract

Slamming impacts on water are common occurrences, and the whipping induced by slamming can significantly increase the structural load. This paper carries out an experimental study of the water entry of rigid wedges with various deadrise angles. The drop height and deadrise angle are parametrically varied to investigate the effect of the entry velocity and wedge shape on the impact dynamics. A two-way coupled approach combing CFD method software STAR-CCM+12.02.011-R8 and the FEM method software Abaqus 6.14 is presented to analyze the effect of structural flexibility on the slamming phenomenon for a wedge and a ship model. The numerical method is validated through the comparison between the numerical simulation and experimental data. The slamming pressure, free surface elevation, and dynamic structural response, including stress and strain, in particular, are presented and discussed. The results show that the smaller the inclined angle at the bottom of the wedge-shaped body, the faster the entry speed into the water, resulting in greater impact pressure and greater structural deformation. Meanwhile, studies have shown that the bottom of the bow is an area of concern for wave impact problems, providing a basis for the assessment of ship safety design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call