Abstract

Recent seismic events indicate that the simplified liquefaction-evaluation procedures are incapable of depicting general trends in liquefaction damage for stratified sands interlayered with silts. The conditions and mechanisms affecting the liquefaction potential of stratified sands exist in the field and ground settlement after liquefaction remain poorly understood. This work aims to investigate the seismic response of nonhomogeneous soil deposits by large-scale model tests and numerical simulations using an advanced constitutive model. A comprehensive experimental program was undertaken in which a total of three shake-table tests were performed on uniform sand and two stratified-sand deposits interlayered with different thicknesses of silt to investigate the ground settlement and distribution and dissipation of excess pore pressure during and after shaking. The shake-table test results and the numerical simulations of the silt-interlayered stratified sands, first indicate that the thickness of the silt seam has a significant influence on the liquefaction resistance of stratified-sand deposits beneath the silt layer. The second conclusion of this study reveals that the thickness and coefficient of consolidation of the silt and the liquefied sand below the silt layer significantly alter the degree of dissipation after the shake, and this causes different deformation/settlement at the ground surface. Therefore, there will be probably inaccuracies in applying simplified liquefaction evaluation procedures to the actual soil profile characterized by various patterns of layering in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call