Abstract

The experimental machining and finite element modeling of 2D turning of AA5083 is presented. The ABAQUS/Explicit machining simulation software is applied for the finite element modeling. The experimental orthogonal machining for were conducted to investigate the effects of various machining parameters on chip morphology, machined surface condition, and resulting cutting forces. The measured cutting forces was compared to finite element modeling results with good agreement. The effects of cutting speed and rack angle of tool cutting factor for productivity in AA5083 machining, depth of cut, on the peak tool temperature are investigated. 2D Finite Element Model (FEM) of chip formation process, set up with an Arbitrary Lagrangian-Eulerian (ALE) formulation, proposed in the software ABAQUS/Explicit .the thermo-viscoplastic behavior of the workpiece material is modeled by the Johnson-Cook (JC) constitutive law. This study explores the use of experimental and finite element modeling to study the cutting force. Results of this research help to guide the design of new cutting tool materials and coatings and the studies of chip formation to further advance the productivity of AA5083 machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.