Abstract

Enhanced efficiency of the adsorption process in the dehumidifier is a key element for improved performance of desiccant cooling systems. Due to the exothermic nature of the adsorption process, the dehumidification and cooling capacity are limited by significant temperature changes in the adsorption column. In the present study, the effects of integration of sensible and latent heat storage particles in the desiccant bed for in situ management of released adsorption heat are investigated. For this purpose, column experiments are performed using an initially dry granular bed made of silica-gel particles or a homogeneous mixture of silica gel and inert sensible or latent heat storage particles. The packed bed is subject to a sudden uniform air flow at selected values of temperature and humidity. Also, a packed bed numerical model is developed that includes the coupled non-equilibrium heat and moisture transfer in the solid and gas phases. Investigations of the heat and mass transfer characteristics are reported using the composite structure and the results are compared with the base case of simple silica gel bed. Improved desiccant cooling system performance can be obtained by appropriate adjustment of desiccant cycle operation and proper choice of the volume ratio of thermal energy storage particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.