Abstract

Tubular member structures are the major component structures of jacket of fixed floating offshore platforms, tension leg platforms (TLPs), or drilling jack-up rigs. During its operations, these structures are constantly serviced by support vessels. Collisions between them are unavoidable. One key considers during the design and safety of these structures is to make sure that they have good safety in the scenario of ship collisions. This research presents a series of fracture tests and numerical study results of T-joints tubular structures subjected to dynamic mass impact. The collision scenarios considered in this study were the collisions between T-joints tubular members and support vessels or floating objects. Eight T-joints of H-shaped tubular members were fabricated with different dimensions and tested under dynamic mass impact by applying the drop test machine. The detailed explanations of test setups and test results are reported. Finite element analyses (FEA) of the collision behaviors of the experimental models were performed using the ABAQUS software. For describing the fracture of T-joint tubular members, the Hosford-Coulomb fracture model was applied. A good agreement between the test results and numerical results was obtained. Furthermore, two ductile fracture modes of the T-joints tubular structures are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call