Abstract
In order to achieve significant weight reduction, multi-material concepts steadily gain importance in the automotive and aviation industry. In this respect, a new hybrid construction approach is the combination of steel and fibre-reinforced thermoplastics (FRT) in a sandwich design. The use of FRT provides a high lightweight potential due to the combination of low density and high tensile strength. Using thermoplastics instead of thermoset matrices enables the reduction of process times and component costs and thus becomes affordable in large-scale application. The combined forming and joining of FRT and steel sheets require elevated temperatures, which lead to a complex forming behaviour. Furthermore, the in-plane and out-of-plane material properties of the FRT, in particular the forming and failure behaviour differ strongly from that of conventional metal materials like steel or aluminium. Therefore, new material characterisation techniques, investigation methods as well as numerical models are required. However, the temperature dependent material behaviour of the steel component and the occurrence of material phenomenon such as blue brittleness also needs to be investigated and taken into account during numerical simulation. This research deals with the experimental investigation and numerical modelling of the material behaviour under deep drawing conditions in order to realize an efficient one-shot forming process with the help of numerical simulation. The numerical analysis is realised with the commercial FE-software Abaqus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.