Abstract

The titanium alloys are the objects of wide experimental analysis in the terms of crack growth characteristics and mechanism of fracture due to their applications. The Ti-6.4%Al-2.6%Mo-1.7%Cr-0.5%Fe-0.5%Si (wt %) alloy was used in the investigation. The tensile tests were conducted on plate specimens. The test variables considered are width of tensile specimen, crack size and tensile loading. The mechanism of fracture that appeared in the specimens was established from the TEM micrographs of the replicas taken from different zones of the fracture surfaces. The mechanism of fracture was also studied using finite element analysis. The results obtained from the FEA were verified with experimental results. It can be concluded that there is a general trend of increasing stress intensity factor with increasing applied tensile load, crack size and width of the flat specimen. The strain energy release increases with increasing applied tensile load. Crack extension can occur when crack-driving force is equal to the energy required for crack growth. For a particular stress the energy release rate is proportional to the crack size. As the tensile load and the size of the initial crack increase, there is an increased crack growth in the Ti alloy. In the crack initiation zone evidence of quasi-cleavage fracture with limited plastic striations symptoms was found in the specimen tested under  =1000MPa. Micro fracture analysis of the specimens (tested under =1100MPa) has revealed quasi-cleavage fracture with small symptoms of plastic shearing in the early part of cracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.