Abstract

This paper presents the experimental findings of high-strength concrete (HSC) interior beam-column joints under column axial compressive loading. Eight full-scale interior beam-column joints with varying degrees of reinforcement detailing were subjected to a constant column axial compressive load and quasi-static horizontal cyclic load. The test revealed that HSC improved the bond condition of bars with a larger diameter due to the higher achievable bond stress, thereby allowing for the use of longitudinal beams of a larger diameter. Parametric studies via finite-element (FE) modeling were performed to study the influence of various parameters on the strength and bond of HSC beam-column joints. The study confirmed that reinforcement of larger diameter can be used in HSC beams with the improvement in the bond condition. The presence of axial compressive load improved the bond stress of HSC beam-column joint but a threshold limit should be applied. Last, two standards were reviewed and improvements to the design equations were proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.