Abstract

In greenhouse gas emission monitoring from industrial stacks, the most common device used to measure stack gas velocity is the S-type Pitot tube. Various factors such as the Reynolds number and misalignment of the installation angle can be additional error sources for the S-type Pitot tube coefficients due to harsh environments. Manufacturing quality of the S-type Pitot tube is also a factor affecting on the measurement uncertainty of stack gas velocity. In the present study, wind tunnel experiments were conducted in Korea Research Institute of Standards and Science (KRISS) standard air speed system to examine the effects of various factors on the S-type Pitot tube coefficients. Numerical simulations were also used to understand flow phenomena around the S-type Pitot tube in the presence of misalignment and distortion of the geometry. The results indicate that misalignment of the pitch and yaw angle change within ±10° changes the S-type Pitot tube coefficients by approximately 2% compared with normal values. The manufacturing quality resulted in unstable values of the coefficients within 2%. However, variations of the Reynolds number (ReD=3.0×103–2.2×104) had no significant effect on the S-type Pitot tube coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call