Abstract

Dapped-end beams (DEBs), also known as thinned end beams, are often experienced in shear damages under the effect of vertical loads. Especially if the necessary precautions for thinned ends of reinforced concrete prefabricated purlins on the roofs having standard cross sections are not considered during the design, these purlins can be failed suddenly under the accumulated snow loads. This situation causes the roof to collapse completely. In order to mitigate this drawback, it is aimed to improve shear capacity of the purlins by using steel fiber reinforced concrete (SFRC) without changing the cross section geometry and reinforcement. Pursuant to this goal, experimental and numerical studies have been undertaken. The presence of steel fiber and the aspect ratio are selected as main parameters. The use of SFRC increased energy dissipation and shear capacities approximately 2.58 and 1.53 times, respectively. Moreover, the numerical analyses were performed in order to determine the optimum length of SFRC used in concrete from beam ends and fiber volume ratio to be used, and to investigate the effects of shear span to depth ratio (a/d). The results revealed that fiber volume ratio of 2% and the length of SFRC used up to the point where dapped-end region ends are recommended. Moreover, increasing the ratio of a/d results in a decrease in load carrying capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.