Abstract

Electronic speckle pattern interferometry (ESPI) is a full field, non-contact technique for measuring the surface displacement of a structure subjected to static loading or, especially, to dynamic vibration. In this article we employ an optical system called the amplitude-fluctuation ESPI with out-of-plane and in-plane measurements to investigate the vibration characteristics of piezoceramic plates. Two different configurations of piezoceramic plates, namely the rectangular and the circular plates, are discussed in detail. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Because the clear fringe patterns will be shown only at resonant frequencies, both the resonant frequencies and the corresponding mode shapes are obtained experimentally at the same time by the proposed AF-ESPI method. Excellent quality of the interferometric fringe patterns for both the in-plane and out-of-plane vibration mode shapes is demonstrated. The resonant frequencies of the piezoceramic plates are also measured by the conventional impedance analysis. From experimental results, we find that the out-of-plane vibration modes (type A) with lower resonant frequencies cannot be measured by the impedance analysis and only the in-plane vibration modes (type B) will be shown. However, both the out-of-plane (bending) and in-plane (extensional) vibration modes of piezoceramic plates are obtained by the AF-ESPI method. Finally, the numerical finite element calculations are also performed, and the results are compared with the experimental measurements. It is shown that the numerical calculations and the experimental results agree fairly well for both the resonant frequencies and the mode shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call