Abstract
Over many decades, natural fibre bundles have been widely used for drainage and filtration applications because of their favourable hydraulic conductivity and abundance in Asian countries. In recent times, natural (biodegradable) coir and jute drains, which are environmentally friendly, have been considered in lieu of conventional geosynthetic wick drains for soft clay consolidation in Australian coastal regions. However, there is a lack of a computational framework to predict the hydraulic behaviour of fibre drains on the basis of micromechanical (fabric) characteristics. Employing computational fluid dynamics (CFD) coupled with the discrete element method (DEM) to model the hydraulic behaviour of fibrous materials has shown promise in an earlier 2016 study by Nguyen and Indraratna, which considered an idealized parallel arrangement of fibres for simplicity. This paper aims to broaden the application of the coupled CFD–DEM technique to real fibres (coconut coir) considering both nontwisted and twisted fibre bundles that have more complex porous structure. The hydraulic conductivity determined from the numerical approach is validated with the experimental results, and also compared with the analytical prediction based on the conventional Kozeny–Carmen (KC) approach. The current study shows that the CFD–DEM technique can capture well the fluid flow characteristics of a nonuniform fibrous structure, including dense twisted coir bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.