Abstract
To investigate the effects of diameter and inclination on the vertical temperature gradient (VTG) of concrete-filled steel tubular (CFST) arches, this study conducted temperature field tests on three CFST segment specimens with diameters of 426mm, 750mm, and 1000mm, as well as an arch specimen with inclination angles varying from 48.76° to -48.76°. 2D and 3D numerical simulation models were developed to analyze the impact of diameter, wall thickness, inclination and orientation. The results indicate that as the diameter increases, the internal temperature becomes more uniform, forming a constant temperature zone in the middle of the VTG, with linear increases in temperature differences at the top (T1) and bottom (T2). Beyond approximately 600mm in diameter, the VTG stabilizes. The maximum T1 of the three segment specimens were 15.37 ℃, 22.40 ℃, and 23.81 ℃, respectively. Inclination affects the solar incidence angle and intensity, causing T1 to vary along the arch span, proportional to solar intensity. The maximum difference of T1 in the arch specimen reached 10.87 ℃. Wall thickness showed minimal effect on the VTG. The proposed VTG pattern was applicable to arches with various orientations and can assist in evaluating thermal effects in CFST arches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.