Abstract

Cavitating venturis (CVs) are simple devices which can be used in different industrial applications to passively control the flow rate of fluids. In this research the operation of small-sized CVs is characterized and their capabilities in regulating the mass flow rate were experimentally and numerically investigated. The effect of upstream and downstream pressures, as well as geometrical parameters such as the throat diameter, throat length, and diffuser angle on the mass flow rate and critical pressure ratio were studied. For experimental data acquisition, three CVs with throat diameters of 0.7, 1 and 1.5mm were manufactured and tested. The fabricated CVs were tested at different upstream and downstream pressures in order to measure their output mass flow rate and to obtain their characteristic curves. The flow inside the CVs was also simulated by computational fluid dynamics. The numerical results showed agreement with the experimental data by a maximum deviation of 5–10% and confirmed that the numerical approach can be used to predict the critical pressure ratio and mass flow rate at cavitaing condition. It is found that despite the small size of venturis, they are capable of controlling the mass flow rate and exhibit the normal characteristics. By decreasing the throat diameter, their cavitating mode became more limited. Results also show that increasing the diffuser angle and throat length leads to a decrease in critical pressure ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.