Abstract

Abstract In this study experimental and numerical investigations with the discrete element method (DEM) on the discharge of spheres and polyhedral dices from a hopper are conducted. In DEM the dices are approximated by polyhedra and smoothed polyhedra respectively and hence allow examining the influence of sharply-edged and smooth particle geometries on the discharge properties. Simulation results are in good general agreement with the experiments and hence demonstrate the adequacy of DEM as well as polyhedral and smoothed polyhedral approximation schemes to simulate non-spherical particle geometries. Compared to spheres the dices exhibit an increased flow resistance and readiness to form pile-ups at the bottom walls of the hopper. Both phenomena are better approximated using polyhedral approximations of the dices, showcasing the influence of the selected shape approximation scheme on the numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.