Abstract

Measuring the temperature distribution in a complex and important engine part, such as a turbocharger, is essential for improving engine performance and efficiency. Heat transfer from the turbine to the compressor can strongly influence the turbocharger performance. One of the main measurement methods involves the installation of multiple K-type sensors. However, the location as well as the maximum and minimum temperatures of the turbocharger and the subsequent critical points may not be obtained by using sensors. In the current study, thermocouples, as well as an infra-red camera, are used to study the temperature distribution of the turbocharger housing in a spark ignition engine. A new method is introduced to determine the thermal radiation coefficient of the turbocharger housing by using a laboratory furnace and an infra-red camera. Together with experiments, the finite element method is used to find the temperature distribution in the turbocharger for all thicknesses. Comparing the temperature distribution obtained from simulation with experimental data, an acceptable level of agreement is observed. The location and temperature of the hottest area in experimental and numerical investigations are close to the waste gate. Temperatures using the finite element method for bearings exhibit maximum and minimum errors of 4.9% and 2.3%, respectively, indicating reasonable accuracy for the simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call