Abstract

This study presents experimental and numerical investigations on the effects of transverse limited micro-grooves on the behavior of film thickness and friction in EHL point contacts. The tribological performance has been compared for smooth and textured surfaces in sliding and reciprocating motion and under starvation. The measurements were conducted by using a ball-on-disk tribometer equipped with a high speed camera and torque sensor. The results show that the transverse shallow micro-grooves with a length less than the diameter of the Hertzian contact are efficiently able to enhance the film thickness under different operating conditions. The beneficial effect under starved lubrication requires a mechanism for filling the depleted micro-grooves entering the contact with fresh lubricant. This mechanism can be attributed to the capillary effect in the inlet zone under starvation. The numerical simulation of the transient behavior of transverse limited micro-grooves shows agreement with experimental results. On the other hand, introducing micro-grooves as closed texture cells on one of rubbing surfaces results in a friction reduction in the reciprocating motion. The reduction of friction is substantially attributed to the film thickness enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.