Abstract

ABSTRACTThe ignition characteristics of a non-premixed multiple-burner linear combustion chamber was investigated experimentally and numerically, focusing on the determination of the mechanisms driving flame propagation from burner to burner. For different inter-burner spacings, overall equivalence ratios and bulk velocities, measurements of the velocity field and the mixture fraction distribution have been performed, respectively, with laser doppler anemometry and planar laser-induced fluorescence of acetone in the un-ignited flow. It was shown that in every individual burner, gas mixes with air within a central recirculation zone (CRZ) where the mixture is flammable except in the axial central rich gas jet and the annular air jet. Flammable mixture from the CRZ is extracted by the annular jet and this results in the existence of bridges of positive flammability factor in the inter-burner region. These bridges allow flame fragments to travel from the CRZ of the ignited burner to the CRZ of the adjacent unignited one, leading to burner-to-burner flame propagation. The ignition probability that sparking within a burner results in ignition of the adjacent one was obtained by performing many separate ignition trials with a laser spark. Ignition probability contours were also computed using a previously developed stochastic low-order ignition model and a large eddy simulation (LES) time-averaged solution of the cold flow. The quantification of the probability a flame kernel leads to burner ignition explained the differences existing between experimental results and the model. The results presented in this article extend our understanding of the mechanisms underlying the global ignition behavior of non-premixed annular combustion chambers.

Highlights

  • In the context of high altitude engine relight, the trend towards lean operation addresses a new challenge brought by the need to ignite successfully the combustion chamber (Lefebvre, 1999; Mastorakos, 2009)

  • The results presented in this article extend our understanding of the mechanisms underlying the global ignition behavior of non-premixed annular combustion chambers

  • A new rig consisting of a series of bluff-body swirl non-premixed burners arranged linearly, based on an annular non-premixed burner previously developed at University of Cambridge, has been examined in order to understand the light-round mechanism, namely, the way a flame propagates from one burner to the adjacent one

Read more

Summary

Introduction

In the context of high altitude engine relight, the trend towards lean operation addresses a new challenge brought by the need to ignite successfully the combustion chamber (Lefebvre, 1999; Mastorakos, 2009). More research is needed in order to assist with the design of new generation gas turbine combustors. Published with license by Taylor & Francis Group, LLC © Edoard Machover, Epaminondas Mastorakos.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call