Abstract

This paper presents an experimental and numerical investigation on welding-induced residual stresses and deformations of in-plane curved welded I-section steel beams. Two welded curved beams with different curvatures were investigated. After welding the curved beam, the residual deformations were measured by a 3D scanner. The residual stresses were subsequently obtained through a high-precision sectioning method. The effects of curvature on the magnitude and distributions of residual deformations and stresses at the specific sections were analysed with the test results. It was found that the residual deformation gradually increased from the weld region to both ends of the flange plate, and the torsion in the web plate became severe with a decrease in curvature of the curved beam. Moreover, the welding process of the curved beam was simulated using the finite element (FE) method. The developed FE model was validated against the test results, and thereafter, parametric analyses were conducted to assess the influence of welding sequence, welding speed, and curvatures of the curved beam on the welding residual stresses and deformations. The numerical results demonstrated that the residual stresses and deformations were significantly influenced by welding speeds, but the influence from curvature of the curved beam was relatively small. Finally, a reasonable welding sequence, welding speed, and curvature of the curved beams were recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call