Abstract
In this paper, the wind resistance performance test and numerical simulation analysis of aluminum alloy columns with different structural measures in unit glass curtain walls are carried out. The two-layer experimental model were composed of 12 unit curtain walls, of which there are 2 beams at a distance of 1.2 m from the top and bottom in 9 unit curtain walls respectively, and there is only one beam at a distance of 1.2 m from the top in 3 unit curtain walls. The dimension of each unit curtain wall is 1.2 m × 4.0 m. The section shape of the experimental model is L-shaped. Firstly, the experimental investigation and analysis of the model with arrangement of one pair of hooks under positive and negative wind were carried out. Secondly, the experimental investigation and analysis of the model with no hooks under positive and negative wind were carried out. The out-of-plane deformation, in-plane deformation and the strain of the columns were collected and analyzed. Finally, finite element analysis model was established. The similarities and differences of the analysis results and the experimental results were analyzed. The results show that the beam has a small constraint on the columns whether the wind pressure is positive or negative when the number and position of hooks are reasonable. When the wind pressure is negative, the hook has little effect on the out-of-plane deformation and stability. Under the action of positive wind, the hooks can significantly reduce the in-plane deformation and restrain the lateral torsion deformation of the columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.