Abstract

The heat transfer characteristics of supercritical fluids in tubes have been considered indispensable for the design and optimization of the heat exchanger and the energy conversion system. Specifically the cooling heat transfer of supercritical R1234ze(E) in horizontal tubes is a promising heat-power conversion technology; however, there is a scarcity of conducted research in available literature. The present work, the first-ever study in this direction, aims to thoroughly investigate the heat transfer characteristics of supercritical R1234ze(E) which is cooled in horizontal tubes. Experimental work was performed to thoroughly explore and inspect the heat transfer characteristics of supercritical R1234ze(E) passing through the tube of 4.12 mm diameter at 4–5 MPa pressure and 240–400 kg/m2 s mass flux. Furthermore, the simulation study, supporting the experimental investigation under the same conditions of pressure and mass flux, extended the range of tube diameter up to 9.44 mm. The effects of pressure, mass flux and tube diameter on the heat transfer coefficient were carefully analyzed in the present research work. Based on the simulation results and experimental results, heat transfer correlations were newly developed by separating the region above and below the pseudo-critical temperature. The average absolute deviation between the calculated Nusselt numbers by the numerical correlation and the simulation results was found 2.87%; the average absolute deviation between the calculated Nusselt numbers by the experimental correlation and the experimental results was found 5.3%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call