Abstract

Integral panels are widely used in aerospace industries. A filling roll bending process is proposed to form integral panels. Filling roll bending experiments of aluminum alloy integral panels were carried out. A 3D elastic–plastic finite element model of filling roll bending process was established and validated by experiment. The effects of filler and process parameters on the deformation homogeneity of the panels were analyzed by using experimental and numerical methods. The results indicate that the filler can improve the deformation homogeneity. With the increasing of the displacement of the top-roller from 5 mm to 40 mm, the experimental and simulation bending radii with filler all reduce, the experimental results reduce from 5806 mm to 190 mm, the simulation results reduce from 5924 mm to 199 mm, and the simulation springback rates with filler reduce from 0.92% to 0.15%. It is proved that high geometric accuracy of the integral panels can be obtained by using filling roll bending process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call