Abstract

Using cold latent heat thermal energy storage (LHTES) in cold chain logistics can improve the energy efficiency. In this study, a shape-stabilized phase change material (PCM) with dodecane as PCM and expanded graphite (EG) as skeleton was developed firstly. The optimal content of EG in composite was confirmed as 16 wt% by heat treatment and DSC testing. The DSC testing results show that dodecane/EG shape-stabilized PCM has a phase change temperature of −9.67 °C and latent heat of 151.7 J/g. The microstructure of the dodecane/EG was characterized by SEM, FT-IR and specific surface area analyzer, and the results show that the dodecane was uniformly stuffed in the pore structure of EG under physical action. Thermal conductivity of the dodecane/EG is 15 times higher than that of dodecane. And the thermal conductivity enhancement of the composite PCM was also verified by the thermal performance test. Moreover, a numerical model of passive storage system with the dodecane/EG PCM was established and the simulation results are highly matched with the experimental result. In conclusion, the prepared dodecane/EG with noticeable thermal permeance and form stability and can be further applied in cold LHTES.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call