Abstract

ABSTRACT This paper illustrates the results of an experimental campaign performed on a scale prototype of a base dissipator called Mini Tribological ROCKing Seismic Isolation Device. This device allows a smooth, controlled and damped rocking by means of frictional layers and viscous elastic springs, which aim at decoupling the frequencies of the superstructure, at dissipating energy during motion and at re-centering the system once the external action vanishes. Four superstructures are tested – a shear type frame, braced and unbraced, a multi-story frame and a SDOF oscillator – with 96 ambient vibration and impulsive tests. An analytical model is illustrated and validated by the experimental tests. The reduction of relative displacement demand is analyzed for all the cases together with the reduction of the acceleration demand, showing positive effects of the base dissipator on the dynamic behavior of all the superstructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.