Abstract

Abstract Differences in fracture patterns and properties at various moisture levels are experimentally and numerically evaluated and discussed. Experiments were performed on spruce, pine, oak and beech. The influence of moisture at 98%, 80%, 65% and 30% RH and the mechanisms involved were investigated for softwoods and hardwoods subjected to opening mode I fracture using in situ and ex situ real-time environmental scanning electron microscopy (ESEM). The wedge-splitting technique was employed. To quantify the effect of humidity, fracture toughness values were obtained from ex situ tests and finite element analysis of the contact problem in wedge-splitting. In addition, lattice fracture model simulations were performed for numerical investigation of the fracture mechanisms. Distinct changes in wood fracture behaviour were observed as a function of moisture content. Fracture toughness was highest at 30% RH for all species except for oak, and showed higher values in the radial-longitudinal than in the tangential-radial direction. In green wood, water droplets moved away from the cell lumens around the crack tip. Drying of wood promotes microcracking and crack bridging as toughening mechanisms. The findings reported may be useful for further research into the interaction between moisture transfer and stress gradients in wood accompanied by moisture-crack phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.