Abstract

We study, experimentally and numerically, the increase of the stimulated Brillouin scattering (SBS) threshold in dispersion-shifted fibers (DSFs) by applying three different tensile-strain distributions. The best results are obtained with a 40-step stair-ramp distribution, for which we demonstrate a 8-dB SBS threshold increase in a 580-m DSF. The Brillouin frequency is observed to shift as a function of the strain at a rate of 0.464 GHz/%. We discuss the potentials and drawbacks of this technique for application in nonlinear devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.