Abstract

Experiments and direct numerical simulations have been performed to examine the effects of initial conditions on the dynamics of a Rayleigh-Taylor mixing layer. Experiments were performed on a water channel facility to quantify the interfacial and velocity perturbations initially present at the two-fluid interface in a small Atwood number mixing layer. The measurements have been parameterized for implementation in numerical simulations of the experiment, and two- and three-dimensional direct numerical simulations (DNS) of the experiment have been performed. It is shown that simulations implemented with initial velocity perturbations are required to match experimentally-measured statistics. Data acquired from both the experiment and numerical simulations are used to elucidate the role of initial conditions on the evolution of integral-scale, turbulence, and mixing statistics. Early-time turbulence and mixing statistics will be shown to be strongly dependent upon the early-time transition of the initial perturbation from a weakly- to a strongly-nonlinear flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.