Abstract

AbstractThe use of microreactors (MRs) in chemical and pharmaceutical industries allows for a series of advantages due to their reduced sizes regarding conventional batch reactors. In the present paper, the transposition of the reaction between 2,4‐thiazolidinedione (TZD) with p‐methoxybenzaldehyde from batch to a continuous capillary MR was carried out. The microdevice performance was evaluated experimentally and numerically by computational fluid dynamics (CFD). The batch process yielded 92% in 480 min using piperidine for equimolar reactant feed, while the pyrrolidine promoted a 100% yield in a 50 min, both using solvent ethanol. Kinetic and thermodynamic parameters of the synthesis using piperidine and pyrrolidine were also obtained from experimental data. In the transposition to flow chemistry, ethanol was also used as solvent and a product yield of 100% (140°C, pyrrolidine) was obtained for a residence time of 20 min, representing a reduction of 24 times in the reaction time. In the numerical simulations by CFD, two mathematical models were elaborated: a transient batch and a steady‐state continuous flow. Both models exhibited good agreement with experimental data. The average relative deviations of TZD conversion and the reaction yields in MRs were, respectively, 0.23% and −7.1% (78°C) and 1.7% and 1.2% (140°C).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call