Abstract

The vibration characteristics of beams have been extensively studied due to their wide application across multiple fields (i.e. spacecraft antennae, aircraft wings, turbine blades, skyscrapers). Of particular interest, specific geometries of beams have been shown to induce coupling between the fundamental bending and torsion modes. This coupled motion can be observed in a beam’s linear normal modes can be avoided with the correct selection of geometric properties. This work investigates the coupled bending-torsion behaviour of a clamped-clamped beam that is coupled perpendicularly, mid-span to mid-span, to a second beam with tip masses within the nonlinear response regime. The first torsion mode of the beam system is tuned by modifying the mass distribution such that closely spaced bending and torsion linear normal modes can be realized. The nonlinear behaviour is presented using nonlinear normal mode backbone curves and forced responses in the vicinity of the modes of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.