Abstract
In this experimental and numerical study an attempt to enhance the heat transfer rate by cylindrical blade that form turbulence flow inside the exchanger pipe is carried out. The effects of the blade geometry are also examined to investigate heat transfer rate in experimented tube inserts. Experiments are performed in different blade spacing (Sy1,2,3 = 101–216–340 mm) and various blade angles (α1,2,3 = 0°–45°–90°). The water flow rate inside the tube is adjusted in three different ranges to approach intended Reynolds numbers (Re1,2,3 = 6000–11,000–17,000). Nusselt number, Reynolds number and effect of friction factor are investigated separately. For all experiments, the increase in Nu number due to used tube inserts is recorded and compared to each other and plain tube in the related profiles. It is concluded that installed tube inserts in the heat exchanger tube, led to a significant increase in Nu number and energy saving. Among different experimented cases, using mean value in various Re numbers, the highest Nusselt number was obtained at Sy1 = 101 mm which was 24% more than that of plain tube. This value was 18.7 and 8.3% for Sy2 = 216 and Sy3 = 340 mm respectively. By this way, according results for friction factor were 0.30, 0.19 and 0.14. The presented study has been simulated by ANSYS Fluent 16 software to analyze flow behavior and heat transfer characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.