Abstract

The processes of hydrogen charging to and discharging from a 3-L cryogenic tank have been studied experimentally and numerically. This study investigated the impacts of factors such as mass flow rate, outlet opening time, bed density, and heating power on the hydrogen charging and discharging processes. For charging, it was found that the flow-through cooling technique could remove the adsorption heat in the process, but some issues such as channeling phenomenon and large thermal mass of the system need to be addressed. Low initial bed temperature is beneficial for hydrogen storage in terms of the efficiency of charging operation. When the bed density of metal organic framework-5 (MOF-5) is increased from 164 kg/m3 to 174 kg/m3, the total storage of hydrogen within the tank increases accordingly. It is found that pressure is the major factor that determines the storage of hydrogen, which increases significantly with the pressure within the tank. For discharging, high pressure in the storage tank can be used to release hydrogen for a certain period of time without heating. However, in order to maintain the desired hydrogen discharge rate, a heat source is eventually needed. This heat must be supplied in order to desorb the additional hydrogen from the system. To deal with the channeling phenomenon in the charging process, cyclic charging was tested and adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.