Abstract

Abstract This paper describes experimental and numerical investigations of sub-cooled boiling, condensation, and void flashing in the HRTL-5 test loop, which simulates the primary loop of a 5 MW nuclear heating reactor. A drift-flow model of two-phase with four governing equations was used, in which sub-cooled boiling, condensation, and void flashing have been taken into account. Based on the mathematical model, a program has been developed for analyzing the natural circulation system. As parameters, inlet sub-cooling, system pressure, and heat flux are varied. For comparison, some simplified models, which are designed to reveal the importance of sub-cooled boiling, condensation, flashing in the HRTL-5 test loop, are adopted in the program. The results show: (1) sub-cooled boiling, condensation, and void flashing may have great influence on the distribution of the void fraction and more intense at low system pressure; (2) the calculation of them is correlative and interactive other than independent; (3) for a system with short heated section, long riser, and low pressure, it is possible to reach “boiling out of the core”, where there is almost no void in the heated section, but much in the riser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call