Abstract
Abstract In a reactor core meltdown under postulated severe accidents, the molten material (corium) could be ejected or relocated through existing vessel penetrations (cooling pipe connections), thus potentially contaminating other locations in the power plant. There exists, however, a potential for plugging of melt flow due to its complete solidification, providing the availability of an adequate heat sink. Therefore, a numerical model was created to simulate the flow of molten metal through an initially empty horizontal pipe. The numerical model was verified using a previously developed analytical model and validated against experimental tests with gallium (low melting temperature) as a substitute for corium. The numerical model was able to predict the penetration length (length of distance traveled by the molten metal) after a complete blockage occurred with an average percent error range of 9%. Since the numerical model has been verified and validated, the model was updated to predict the penetration length in the cooling pipe in case of a severe accident. The model was used to predict the penetration length for different Reynolds numbers and pipe diameters, which resulted in the range of penetration length from about 0.33 m to 0.93 m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nuclear Engineering and Radiation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.