Abstract

The continuous technological development in the field of solar thermal application is a pressing need to harvest and utilize the solar energy in an efficient manner. Development of a flat plate cooking unit (FPCU) intended for the indirect mode of solar cooking has been attempted. In this paper, the performance of the FPCU integrated with the latent heat thermal energy storage system is studied experimentally in order to replace the conventional mode of biomass or LPG based cooking. The heat transfer fluid (HTF), Therminol 55 and the phase change material (PCM), D Mannitol is used in the experimental set-up. The food medium energy utilization, instantaneous heat transfer rate and detailed energy balance for the cooking unit integrated with storage tank is reported. In addition, computational fluid dynamic (CFD) analysis using ANSYS Fluent software is also performed on the newly developed FPCU to analyze the cooking period heat transfer behavior. The results of CFD analysis is validated with experimental results and the results show that the average heat transfer coefficient during the cooking process is found to be approximately 100 W/m2K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.