Abstract
High-pile wharf is an important port structure and may suffer from accidental explosions or terrorist bombing attack during the service life. The reinforced concrete (RC) pile is one of the popular vertical load-bearing piles of high-pile wharf structure. As a main load-bearing member of the high-pile wharf structure, the damage of RC pile due to underwater explosive may cause subsequently progressive collapse of the whole structure. In this paper, the dynamic response and failure mode of RC pile in high-pile wharf structure under the near-field non-contact underwater explosion are investigated using a combined experimental and numerical study. First, a typical RC pile was designed and tested for the near-field non-contact underwater explosion. The failure mode and damage of the RC pile specimen were obtained and analyzed. Second, the numerical model of the RC pile under near-field non-contact underwater explosion was established by adopting the commercial software AUTODYN, and then validated based on experimental results. It was shown that the results from numerical model and experimental test compared very well in terms of the damage pattern and lateral displacement. Furthermore, the full-scale numerical model of the RC pile for the near-field non-contact underwater explosion was developed based on the validated numerical model to investigate the damage pattern and failure mode of RC pile under varied underwater explosives. Lastly, the safety distance for the RC pile for the underwater explosion loading with consideration of different explosive mass, the explosive depth and the concrete strength was suggested. The outcome of this study presented reference for analysis, assessment and design of the type of RC pile for high-pile wharf structure subjected to near-field non-contact underwater explosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.