Abstract

This study presents an experimental investigation of metastable region take place forrefrigerant flow through adiabatic and non-adiabatic capillary tube of window type airconditioner. Large numbers of experiments are carried out to explain the effect of length ofstraight and helical capillary tube on metastable region under adiabatic and non-adiabaticconditions. for the case of adiabatic capillary tube, three different length are selected(70,100 and 150) cm and two helical capillary tube, the length of each tube is 100 cm withtwo coil diameters (2 and 6) cm. For the non-adiabatic capillary tube, the straight capillarytube suction line is 150 cm while the length of non-adiabatic helical capillary tube is 200 cmwith 8 cm coil diameter. The results show that the length is the most influence parameterson beginning of metastable region. In addition the helical coil tube effect on the beginningof metastable region. As well as for the adiabatic and non-adiabatic capillary tube it isconcluded that mass flow rate is the main parameters on beginning of metastable region.Also effect of length and coiling on both pressure drop and mass flow rate are discussed.The CFD commercial code, ANSYS CFX 16.1 based on finite volume method using Kturbulencemodel considering the homogeneous flow between phases applied to straightcapillary tube. The present numerical data has been validated with the present workexperimental data and with other researchers. A good agreement is obtained which can belead to use ANSYS CFX 16.1 in the design and optimization of capillary tube in airconditioner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.