Abstract

Vehicle fires may cause localized fires on on-board high-pressure hydrogen storage tanks. To verify the safety performance of such tanks under localized fire exposure, a localized fire test was proposed in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles. However, practicality and validity of the proposed test still require further verification. In this paper, this new fire test was experimentally investigated using the type 3 tanks. Influences of hydrogen and air as the filling media were studied. A three-dimensional computational fluid dynamics model was developed to analyze the effects of filling pressure and localized fire exposure time on the activation of thermally-activated pressure relief device (TPRD). The experimental results showed that temperature distribution on the tank surface was uneven around the circumference. The rising temperature of internal hydrogen or air contributed little to TPRD activation. The simulation results indicated that TPRD activation time was slightly affected by the variations of the filling pressures, but it increased when the localized fire exposure time was extended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.