Abstract

To decrease the latent heat load of the air-conditioning system in residential buildings, we proposed a passive dehumidification and mechanical ventilation system that integrates energy recovery ventilation (ERV) into a passive dehumidification and solar collection (PDSC) system that can intelligently regulate the indoor hygrothermal environment, referred to as the PSE (PDSC & ERV) system. Field studies were conducted by monitoring the indoor temperature and humidity changes in the operating conditions using various systems. With the PSE system, the absolute humidity difference between the indoor and outdoor air was the most significant, and its ability to maintain a stable indoor relative humidity was the most remarkable compared with other systems. The PSE model had the lowest latent and total heat load compared with the exhaust-only ventilation model equipped with a standard insulated envelope without moisture adsorption and desorption function. Regression analysis showed that the higher the outdoor temperature, absolute humidity, relative humidity, and solar radiation in summer, the more significant the PSE system's latent heat load reduction effectiveness. Linear correlation between absolute humidity and energy-saving performance was the most evident, with a coefficient of determination as high as 0.98, illustrating the suitability of PSE systems for hot and humid areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call