Abstract

The hydrothermal performance of the microchannel heat sinks with different pin fins (PF-MCHS) is studied experimentally and numerically. Five pin fins, namely rectangular pin fin (RPF), backward triangular pin fin (BTPF), forward triangular pin fin (FTPF), diamond pin fin (DPF) and ellipsoidal pin fin (EPR) are integrated in the microchannel for enhancing heat transfer. The results show that the PF-MCHSs possess 51.8–94.8 % higher average Nusselt number than the conventional microchannel (CMC) without pin fins, which indicates that these pin fins all can cause significant heat enhancement in the microchannels. Among all finned microchannels, the MC- RPF and MC-BTPF can offer the larger Nusselt number than the other microchannels. In addition to the improved thermal performance, the pin fins also result in the larger apparent friction factor. Furthermore, taking the MC-RPF and MC-BTPF as examples, three non-dimensional parameters α = P/L, β = wp/hc and γ = lp/hc are proposed for optimizing the global characteristics of microchannels. The rise of Nussle number and apparent friction factor is often accompanied by a decrease in α, or an increase in β and γ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.