Abstract

A combined experimental and numerical investigation of the heat transfer characteristics within an array of impinging jets has been conducted. The experiments were carried out in a perspex model using a transient liquid crystal method. Local jet temperatures were measured at several positions on the impingement plate to account for an exact evaluation of the heat transfer coefficient. The effects of the variation in different impingement patterns, jet-to-plate spacing, crossflow schemes, and jet Reynolds number on the distribution of the local Nusselt number and the related pressure loss were investigated experimentally. In addition to the measurements, a numerical investigation was conducted. The motivation was to evaluate whether computational fluid dynamics (CFD) can be used as an engineering design tool in the optimization of multijet impingement configurations. This required, as a first step, a validation of the numerical results. For the present configuration, this was achieved assessing the degree of accuracy to which the measured heat transfer rates could be computed. The overall agreement was very good and even local heat transfer coefficients were predicted at high accuracy. The numerical investigation showed that state-of-the-art CFD codes can be used as suitable means in the thermal design process of such configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call