Abstract

In this paper experimental and numerical results concerning the dynamic response of composite sandwich beams with curvature and debonds are reported. Sandwich beams made of carbon/epoxy face sheets and polyurethane foam core material were manufactured with four different radii of curvature and debonds between the top and bottom interface of face sheet and foam core. Dynamic response was obtained using the impulse frequency response technique under clamped-clamped boundary condition. Experimental results were compared with numerical finite element model results. A combined experimental and numerical FE approach was used to determine the material properties of the skin and foam core materials based on modal vibration and static flexure tests. Results indicate that the fundamental frequency increases with increasing curvature angle, however, for higher frequencies; the natural frequencies are not significantly affected. Also, it is found that face/core debond causes reduction of the natural frequencies due to stiffness degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call