Abstract

In this study, a three-dimensional finite element model was developed to predict the fatigue life of composite bolted joints. In this model, progressive damage theory was used. The fatigue characterization was based on Hashin’s failure criteria which recognize the failure modes. To decrease the number of unidirectional tests, the effects of load ratio were considered based on Kawai’s criterion. A modified form of Miner’s rule was proposed to calculate the damage parameter. This equation corrected the effects of the fatigue failure cycles and included the effects of different load ratios. Also, this model could decrease the overestimation of the fatigue life predictions. All of the formulations were combined and used in a step-by-step solution. In this respect, a new iterative algorithm was developed so that at each step of solution, the material properties of all failed layers of each element were reduced according to the failure mode and sudden degradation rules. The estimated fatigue life was compared to the experimental data, and an excellent correlation between the results was observed. This model could monitor the damage propagation in fabricated joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call