Abstract

Abstract In the present study, the effect of expansion corner on suddenly expanded flow process has been studied. Experimental investigations have been carried out on a convergent-divergent (C-D) nozzle and isolator duct, where the expansion of the channel is formed through the presence of a 1, 2 and 3 expansion corners (EC) respectively. Flow from nozzle exit of the nozzle of Mach, M = 2.0 was suddenly expanded into the axi-symmetric duct having a cross sectional area of 4.84 times the nozzle exit area. The wall static pressure along the length of the duct and the Pitot pressure at the exit plane of the duct were measured for all the configurations. Computational fluid dynamics (CFD) technique was employed for visualizing the shock-train in the expanded duct. The isolator with one expansion corner was found to be more efficient in achieving a high static pressure rise. The experimental and numerical wall static pressure distribution values were compared for isolators with EC = 2 and found to be in good agreement with each other with a maximum absolute percentage deviation of 11%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call