Abstract
Reinforced concrete corbels were examined in this study for the cracking behavior and strength evaluation, focusing on defects typically found in these structures. A total of 11 corbel specimens were tested, including healthy specimens (HS), specimens with lower concrete strength (LC), specimens with less reinforcement ratio (LR), and specimens with more concrete cover than specifications (MC). The HS specimens were designed using the ACI conventional method. The specimens were tested under static loading conditions, and the actual strengths along with the crack patterns were determined. In the experimental tests, the shear capacity of the HS specimens was 28.18% and 57.95% higher than the LR and LC specimens, respectively. Similarly, the moment capacity of the HS specimens was 25% and 57.52% greater than the LR and LC specimens, respectively. However, in the case of the built-up sections, the shear capacity of the HS specimens was 9.91% and 37.51% higher than the LR and LC specimens, respectively. Likewise, the moment capacity of the HS specimens was 39.91% and 14.30% higher than the LR and LC specimens, respectively. Moreover, a detailed nonlinear finite element model (FEM) was developed using ABAQUS, and a more user-friendly strut and tie model (STM) was investigated toward its suitability to assess the strengths of the corbels with construction defects. The results from FEM and STM were compared. It was found that the FEM results were in close agreement with their experimental counterparts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.