Abstract

Accuracy of the finite element simulation of sheet metal forming is significantly dependent on the correctness of input properties and appropriate selection of material models. In this work, anisotropic yield criteria namely, Hill 1948, Barlat 1989, Barlat 1996, Barlat 2000 and Cazacu Barlat have been implemented for Ti–6Al–4V alloy at 400°C. Material constants required for the yield criteria have been determined and deformation behavior in deep drawing process has been analyzed in finite element software. Also, deep drawing experiments on Ti–6Al–4V alloy have been performed at 400°C to validate finite element simulation results. Further, comparison of yield criteria based on thickness distribution, earing profile, complexity in material parameter identification and computational time has shown Cazacu-Barlat to be well suited for deep drawing of Ti–6Al–4V alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.