Abstract
Abstract The world's need for drinkable water is increasing with a growing population. The desalination process using solar energy is the cheapest and most straightforward method that can be used to generate pure water from saline water by utilizing energy from the sun's free heat source. A semispherical and chamber stepwise basin solar still with an inclined glass cover, with and without photovoltaic (PV)-powered electrical heaters as another power source, can increase the rate of evaporation of saline water, thus increasing the productivity of semispherical solar still. In this investigation, a conventional solar still and semispherical solar still with and without PV-powered electrical heaters were invented and worked in parallel with the experimental setup to make a good comparison between these models. The experimental results show that stepped semispherical with PV-powered electrical heater and without PV-powered electrical heater solar stills enhanced the productivity of freshwater from a conventional solar still by 156.6% and 72.5%, respectively. The theoretically simulated model is obtained using mathcad software and is compared with experimental results. Semispherical solar still productivity increases with increased solar intensity and with a PV-powered electrical heater as an additional power source. The theoretical results concluded from the mathematical model are in good agreement with experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.