Abstract

Latent heat storage systems are an effective way of storing thermal energy. Recently, phase change materials were considered also in the thermal control of compact electronic devices. In the present work a numerical and experimental investigation is presented for a solid-liquid phase change process dominated by heat conduction. In the experimental arrangement a plane slab of PCM is heated from above with an on-off thermal power simulating the behaviour of an electronic device. A two-dimensional finite volume code is used for the solution of the corresponding mathematical model. The comparison between numerical predictions and experimental data shows a good agreement. Finally, in order to characterize this thermal energy storage system, the time distribution of latent and sensible heat is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.