Abstract

In this research, the strength of confined concrete was tested and evaluated numerically by examining the influence of three variables: fibre material, corner radius, and FRCM (Fiber Reinforced Cementitious Matrix) layer number. The study used thirty C-FRCM and thirty G-FRCM specimens and developed a new empirical formula to estimate confined concrete compressive strength based on experimental results. The advanced formula was then used to determine the input parameters of the nonlinear concrete Mazar model for simulating confined concrete areas. A parametric study investigated the effects of cross-section size, corner radius, cross-section scale, fibre mesh type, and the number of FRCM layers on confined concrete compressive strength. The proposed finite element method was found to be effective in accurately predicting confined element compressive strength and nonlinear behaviour, including core concrete, FRCM layers, and stress concentrations at corners.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call