Abstract

The modal testing has proven to be an effective and non-destructive test method for estimation of the dynamic stiffness and damping constant. The aim of the present paper is to investigate the modal response of stiffened Fiber Metal Laminated (FML) circular cylindrical shells using experimental and numerical techniques. For this purpose, three types of FML-stiffened shells are fabricated by a specially-designed method and the burning examination is used to determine the mechanical properties of them. Then, modal tests are conducted to investigate the vibration and damping characteristics of the FML-stiffened shells. A 3D finite element model is built using ABAQUS software to predict the modal characteristics of the FML-stiffened circular cylindrical shells with free-free ends. Finally, the achievements from the numerical and experimental analyses are compared with each other and good agreement has been obtained. Modal analyses of the FML-stiffened circular cylindrical shells are investigated for the first time in this paper. Thus, the results obtained from this study are novel and can be used as a benchmark for further studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.